3.3.85 \(\int \frac {a+a \sec (c+d x)}{(e \csc (c+d x))^{3/2}} \, dx\) [285]

3.3.85.1 Optimal result
3.3.85.2 Mathematica [A] (verified)
3.3.85.3 Rubi [A] (verified)
3.3.85.4 Maple [C] (warning: unable to verify)
3.3.85.5 Fricas [C] (verification not implemented)
3.3.85.6 Sympy [F]
3.3.85.7 Maxima [F]
3.3.85.8 Giac [F]
3.3.85.9 Mupad [F(-1)]

3.3.85.1 Optimal result

Integrand size = 23, antiderivative size = 182 \[ \int \frac {a+a \sec (c+d x)}{(e \csc (c+d x))^{3/2}} \, dx=-\frac {2 a}{d e \sqrt {e \csc (c+d x)}}-\frac {2 a \cos (c+d x)}{3 d e \sqrt {e \csc (c+d x)}}+\frac {a \arctan \left (\sqrt {\sin (c+d x)}\right )}{d e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a \text {arctanh}\left (\sqrt {\sin (c+d x)}\right )}{d e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right )}{3 d e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \]

output
-2*a/d/e/(e*csc(d*x+c))^(1/2)-2/3*a*cos(d*x+c)/d/e/(e*csc(d*x+c))^(1/2)+a* 
arctan(sin(d*x+c)^(1/2))/d/e/(e*csc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)+a*arcta 
nh(sin(d*x+c)^(1/2))/d/e/(e*csc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)-2/3*a*(sin( 
1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2 
*c+1/4*Pi+1/2*d*x),2^(1/2))/d/e/(e*csc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)
 
3.3.85.2 Mathematica [A] (verified)

Time = 9.74 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.74 \[ \int \frac {a+a \sec (c+d x)}{(e \csc (c+d x))^{3/2}} \, dx=-\frac {a \left (12+4 \cos (c+d x)+6 \arctan \left (\sqrt {\csc (c+d x)}\right ) \sqrt {\csc (c+d x)}+3 \sqrt {\csc (c+d x)} \log \left (1-\sqrt {\csc (c+d x)}\right )-3 \sqrt {\csc (c+d x)} \log \left (1+\sqrt {\csc (c+d x)}\right )+\frac {4 \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),2\right )}{\sqrt {\sin (c+d x)}}\right )}{6 d e \sqrt {e \csc (c+d x)}} \]

input
Integrate[(a + a*Sec[c + d*x])/(e*Csc[c + d*x])^(3/2),x]
 
output
-1/6*(a*(12 + 4*Cos[c + d*x] + 6*ArcTan[Sqrt[Csc[c + d*x]]]*Sqrt[Csc[c + d 
*x]] + 3*Sqrt[Csc[c + d*x]]*Log[1 - Sqrt[Csc[c + d*x]]] - 3*Sqrt[Csc[c + d 
*x]]*Log[1 + Sqrt[Csc[c + d*x]]] + (4*EllipticF[(-2*c + Pi - 2*d*x)/4, 2]) 
/Sqrt[Sin[c + d*x]]))/(d*e*Sqrt[e*Csc[c + d*x]])
 
3.3.85.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.70, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 4366, 3042, 4360, 25, 25, 3042, 3317, 3042, 3044, 262, 266, 756, 216, 219, 3115, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a \sec (c+d x)+a}{(e \csc (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a-a \csc \left (c+d x-\frac {\pi }{2}\right )}{\left (e \sec \left (c+d x-\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4366

\(\displaystyle \frac {\int (\sec (c+d x) a+a) \sin ^{\frac {3}{2}}(c+d x)dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \cos \left (c+d x-\frac {\pi }{2}\right )^{3/2} \left (a-a \csc \left (c+d x-\frac {\pi }{2}\right )\right )dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 4360

\(\displaystyle \frac {\int -\left ((-\cos (c+d x) a-a) \sec (c+d x) \sin ^{\frac {3}{2}}(c+d x)\right )dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int -\left ((\cos (c+d x) a+a) \sec (c+d x) \sin ^{\frac {3}{2}}(c+d x)\right )dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int (\cos (c+d x) a+a) \sec (c+d x) \sin ^{\frac {3}{2}}(c+d x)dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (-\cos \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3317

\(\displaystyle \frac {a \int \sin ^{\frac {3}{2}}(c+d x)dx+a \int \sec (c+d x) \sin ^{\frac {3}{2}}(c+d x)dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \int \sin (c+d x)^{3/2}dx+a \int \frac {\sin (c+d x)^{3/2}}{\cos (c+d x)}dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3044

\(\displaystyle \frac {\frac {a \int \frac {\sin ^{\frac {3}{2}}(c+d x)}{1-\sin ^2(c+d x)}d\sin (c+d x)}{d}+a \int \sin (c+d x)^{3/2}dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {\frac {a \left (\int \frac {1}{\sqrt {\sin (c+d x)} \left (1-\sin ^2(c+d x)\right )}d\sin (c+d x)-2 \sqrt {\sin (c+d x)}\right )}{d}+a \int \sin (c+d x)^{3/2}dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\frac {a \left (2 \int \frac {1}{1-\sin ^2(c+d x)}d\sqrt {\sin (c+d x)}-2 \sqrt {\sin (c+d x)}\right )}{d}+a \int \sin (c+d x)^{3/2}dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {a \int \sin (c+d x)^{3/2}dx+\frac {a \left (2 \left (\frac {1}{2} \int \frac {1}{1-\sin (c+d x)}d\sqrt {\sin (c+d x)}+\frac {1}{2} \int \frac {1}{\sin (c+d x)+1}d\sqrt {\sin (c+d x)}\right )-2 \sqrt {\sin (c+d x)}\right )}{d}}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {a \left (2 \left (\frac {1}{2} \int \frac {1}{1-\sin (c+d x)}d\sqrt {\sin (c+d x)}+\frac {1}{2} \arctan \left (\sqrt {\sin (c+d x)}\right )\right )-2 \sqrt {\sin (c+d x)}\right )}{d}+a \int \sin (c+d x)^{3/2}dx}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {a \int \sin (c+d x)^{3/2}dx+\frac {a \left (2 \left (\frac {1}{2} \arctan \left (\sqrt {\sin (c+d x)}\right )+\frac {1}{2} \text {arctanh}\left (\sqrt {\sin (c+d x)}\right )\right )-2 \sqrt {\sin (c+d x)}\right )}{d}}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin (c+d x)}}dx-\frac {2 \sqrt {\sin (c+d x)} \cos (c+d x)}{3 d}\right )+\frac {a \left (2 \left (\frac {1}{2} \arctan \left (\sqrt {\sin (c+d x)}\right )+\frac {1}{2} \text {arctanh}\left (\sqrt {\sin (c+d x)}\right )\right )-2 \sqrt {\sin (c+d x)}\right )}{d}}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin (c+d x)}}dx-\frac {2 \sqrt {\sin (c+d x)} \cos (c+d x)}{3 d}\right )+\frac {a \left (2 \left (\frac {1}{2} \arctan \left (\sqrt {\sin (c+d x)}\right )+\frac {1}{2} \text {arctanh}\left (\sqrt {\sin (c+d x)}\right )\right )-2 \sqrt {\sin (c+d x)}\right )}{d}}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {a \left (2 \left (\frac {1}{2} \arctan \left (\sqrt {\sin (c+d x)}\right )+\frac {1}{2} \text {arctanh}\left (\sqrt {\sin (c+d x)}\right )\right )-2 \sqrt {\sin (c+d x)}\right )}{d}+a \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{3 d}-\frac {2 \sqrt {\sin (c+d x)} \cos (c+d x)}{3 d}\right )}{e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

input
Int[(a + a*Sec[c + d*x])/(e*Csc[c + d*x])^(3/2),x]
 
output
((a*(2*(ArcTan[Sqrt[Sin[c + d*x]]]/2 + ArcTanh[Sqrt[Sin[c + d*x]]]/2) - 2* 
Sqrt[Sin[c + d*x]]))/d + a*((2*EllipticF[(c - Pi/2 + d*x)/2, 2])/(3*d) - ( 
2*Cos[c + d*x]*Sqrt[Sin[c + d*x]])/(3*d)))/(e*Sqrt[e*Csc[c + d*x]]*Sqrt[Si 
n[c + d*x]])
 

3.3.85.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3044
Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_ 
Symbol] :> Simp[1/(a*f)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a 
*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&  !(I 
ntegerQ[(m - 1)/2] && LtQ[0, m, n])
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3317
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[(g*Co 
s[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[(g*Cos[e + f*x])^ 
p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 

rule 4366
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*( 
x_)])^(p_), x_Symbol] :> Simp[g^IntPart[p]*(g*Sec[e + f*x])^FracPart[p]*Cos 
[e + f*x]^FracPart[p]   Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x], x] / 
; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]
 
3.3.85.4 Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.88 (sec) , antiderivative size = 547, normalized size of antiderivative = 3.01

method result size
parts \(-\frac {a \sqrt {2}\, \left (i \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (d x +c \right )+i \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right )-\cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\right ) \sin \left (d x +c \right )}{3 d \sqrt {e \csc \left (d x +c \right )}\, \left (\cos \left (d x +c \right )-1\right ) e \left (\cos \left (d x +c \right )+1\right )}+\frac {a \left (\arctan \left (\sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \left (\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right ) \sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \cos \left (d x +c \right )-\sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \operatorname {arctanh}\left (\sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \left (\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right ) \cos \left (d x +c \right )+\arctan \left (\sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \left (\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right ) \sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}-\sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \operatorname {arctanh}\left (\sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \left (\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )+2 \sin \left (d x +c \right )\right ) \sin \left (d x +c \right )}{d \sqrt {e \csc \left (d x +c \right )}\, \left (\cos \left (d x +c \right )-1\right ) e \left (\cos \left (d x +c \right )+1\right )}\) \(547\)
default \(\text {Expression too large to display}\) \(1058\)

input
int((a+a*sec(d*x+c))/(e*csc(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/3*a/d*2^(1/2)*(I*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c) 
-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticF((-I*(I-co 
t(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))*cos(d*x+c)+I*(-I*(I-cot(d*x+c)+cs 
c(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc( 
d*x+c)))^(1/2)*EllipticF((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2)) 
-cos(d*x+c)*sin(d*x+c)*2^(1/2))/(e*csc(d*x+c))^(1/2)/(cos(d*x+c)-1)/e/(cos 
(d*x+c)+1)*sin(d*x+c)+a/d*(arctan((sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(cot 
(d*x+c)+csc(d*x+c)))*(sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)-(sin(d 
*x+c)/(cos(d*x+c)+1)^2)^(1/2)*arctanh((sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)* 
(cot(d*x+c)+csc(d*x+c)))*cos(d*x+c)+arctan((sin(d*x+c)/(cos(d*x+c)+1)^2)^( 
1/2)*(cot(d*x+c)+csc(d*x+c)))*(sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)-(sin(d*x 
+c)/(cos(d*x+c)+1)^2)^(1/2)*arctanh((sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(c 
ot(d*x+c)+csc(d*x+c)))+2*sin(d*x+c))/(e*csc(d*x+c))^(1/2)/(cos(d*x+c)-1)/e 
/(cos(d*x+c)+1)*sin(d*x+c)
 
3.3.85.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.40 (sec) , antiderivative size = 608, normalized size of antiderivative = 3.34 \[ \int \frac {a+a \sec (c+d x)}{(e \csc (c+d x))^{3/2}} \, dx=\left [-\frac {6 \, a \sqrt {-e} \arctan \left (-\frac {{\left (\cos \left (d x + c\right )^{2} - 6 \, \sin \left (d x + c\right ) - 2\right )} \sqrt {-e} \sqrt {\frac {e}{\sin \left (d x + c\right )}}}{4 \, {\left (e \sin \left (d x + c\right ) + e\right )}}\right ) + 3 \, a \sqrt {-e} \log \left (\frac {e \cos \left (d x + c\right )^{4} - 72 \, e \cos \left (d x + c\right )^{2} - 8 \, {\left (\cos \left (d x + c\right )^{4} - 9 \, \cos \left (d x + c\right )^{2} + {\left (7 \, \cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right ) + 8\right )} \sqrt {-e} \sqrt {\frac {e}{\sin \left (d x + c\right )}} + 28 \, {\left (e \cos \left (d x + c\right )^{2} - 2 \, e\right )} \sin \left (d x + c\right ) + 72 \, e}{\cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} - 2\right )} \sin \left (d x + c\right ) + 8}\right ) + 16 \, {\left (a \cos \left (d x + c\right ) + 3 \, a\right )} \sqrt {\frac {e}{\sin \left (d x + c\right )}} \sin \left (d x + c\right ) + 8 i \, a \sqrt {2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 8 i \, a \sqrt {-2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )}{24 \, d e^{2}}, -\frac {6 \, a \sqrt {e} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} + 6 \, \sin \left (d x + c\right ) - 2\right )} \sqrt {e} \sqrt {\frac {e}{\sin \left (d x + c\right )}}}{4 \, {\left (e \sin \left (d x + c\right ) - e\right )}}\right ) - 3 \, a \sqrt {e} \log \left (\frac {e \cos \left (d x + c\right )^{4} - 72 \, e \cos \left (d x + c\right )^{2} + 8 \, {\left (\cos \left (d x + c\right )^{4} - 9 \, \cos \left (d x + c\right )^{2} - {\left (7 \, \cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right ) + 8\right )} \sqrt {e} \sqrt {\frac {e}{\sin \left (d x + c\right )}} - 28 \, {\left (e \cos \left (d x + c\right )^{2} - 2 \, e\right )} \sin \left (d x + c\right ) + 72 \, e}{\cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} - 2\right )} \sin \left (d x + c\right ) + 8}\right ) + 16 \, {\left (a \cos \left (d x + c\right ) + 3 \, a\right )} \sqrt {\frac {e}{\sin \left (d x + c\right )}} \sin \left (d x + c\right ) + 8 i \, a \sqrt {2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 8 i \, a \sqrt {-2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )}{24 \, d e^{2}}\right ] \]

input
integrate((a+a*sec(d*x+c))/(e*csc(d*x+c))^(3/2),x, algorithm="fricas")
 
output
[-1/24*(6*a*sqrt(-e)*arctan(-1/4*(cos(d*x + c)^2 - 6*sin(d*x + c) - 2)*sqr 
t(-e)*sqrt(e/sin(d*x + c))/(e*sin(d*x + c) + e)) + 3*a*sqrt(-e)*log((e*cos 
(d*x + c)^4 - 72*e*cos(d*x + c)^2 - 8*(cos(d*x + c)^4 - 9*cos(d*x + c)^2 + 
 (7*cos(d*x + c)^2 - 8)*sin(d*x + c) + 8)*sqrt(-e)*sqrt(e/sin(d*x + c)) + 
28*(e*cos(d*x + c)^2 - 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d 
*x + c)^2 - 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)) + 16*(a*cos(d*x + c) 
 + 3*a)*sqrt(e/sin(d*x + c))*sin(d*x + c) + 8*I*a*sqrt(2*I*e)*weierstrassP 
Inverse(4, 0, cos(d*x + c) + I*sin(d*x + c)) - 8*I*a*sqrt(-2*I*e)*weierstr 
assPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c)))/(d*e^2), -1/24*(6*a*sqrt 
(e)*arctan(1/4*(cos(d*x + c)^2 + 6*sin(d*x + c) - 2)*sqrt(e)*sqrt(e/sin(d* 
x + c))/(e*sin(d*x + c) - e)) - 3*a*sqrt(e)*log((e*cos(d*x + c)^4 - 72*e*c 
os(d*x + c)^2 + 8*(cos(d*x + c)^4 - 9*cos(d*x + c)^2 - (7*cos(d*x + c)^2 - 
 8)*sin(d*x + c) + 8)*sqrt(e)*sqrt(e/sin(d*x + c)) - 28*(e*cos(d*x + c)^2 
- 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(cos(d* 
x + c)^2 - 2)*sin(d*x + c) + 8)) + 16*(a*cos(d*x + c) + 3*a)*sqrt(e/sin(d* 
x + c))*sin(d*x + c) + 8*I*a*sqrt(2*I*e)*weierstrassPInverse(4, 0, cos(d*x 
 + c) + I*sin(d*x + c)) - 8*I*a*sqrt(-2*I*e)*weierstrassPInverse(4, 0, cos 
(d*x + c) - I*sin(d*x + c)))/(d*e^2)]
 
3.3.85.6 Sympy [F]

\[ \int \frac {a+a \sec (c+d x)}{(e \csc (c+d x))^{3/2}} \, dx=a \left (\int \frac {1}{\left (e \csc {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {\sec {\left (c + d x \right )}}{\left (e \csc {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))/(e*csc(d*x+c))**(3/2),x)
 
output
a*(Integral((e*csc(c + d*x))**(-3/2), x) + Integral(sec(c + d*x)/(e*csc(c 
+ d*x))**(3/2), x))
 
3.3.85.7 Maxima [F]

\[ \int \frac {a+a \sec (c+d x)}{(e \csc (c+d x))^{3/2}} \, dx=\int { \frac {a \sec \left (d x + c\right ) + a}{\left (e \csc \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))/(e*csc(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate((a*sec(d*x + c) + a)/(e*csc(d*x + c))^(3/2), x)
 
3.3.85.8 Giac [F]

\[ \int \frac {a+a \sec (c+d x)}{(e \csc (c+d x))^{3/2}} \, dx=\int { \frac {a \sec \left (d x + c\right ) + a}{\left (e \csc \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))/(e*csc(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)/(e*csc(d*x + c))^(3/2), x)
 
3.3.85.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+a \sec (c+d x)}{(e \csc (c+d x))^{3/2}} \, dx=\int \frac {a+\frac {a}{\cos \left (c+d\,x\right )}}{{\left (\frac {e}{\sin \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int((a + a/cos(c + d*x))/(e/sin(c + d*x))^(3/2),x)
 
output
int((a + a/cos(c + d*x))/(e/sin(c + d*x))^(3/2), x)